Home » Science » Continuous Monitoring Station

Category: Continuous Monitoring Station

And how is your summer going?

Summer is going swimmingly here at Friends of Casco Bay, and we have a lot of good news to share:

  • Our priority legislative bill to create a state-level Climate Change and Ocean Acidification Council was incorporated nearly word-for-word into the Governor’s comprehensive Climate Change Council bill. An Act to Promote Clean Energy Jobs and to Establish the Maine Climate Council passed with strong bipartisan support. In recognition of her yeoman’s work on this issue, Casco Baykeeper Ivy Frignoca was invited to attend the bill signing by Governor Janet Mills on June 26th.

 

  • Our water quality sampling season is well underway, as we continue to add to our long-term dataset at 22 shoreside and deepwater sites around the Bay. You may see Research Associate Mike Doan and Casco Baykeeper Ivy making the rounds by land and by sea every few weeks from April through October.

 

  • Photo by Kevin Morris

    Since early June, Executive Director Cathy Ramsdell has been attending bi-weekly meetings of the South Portland Fertilizer Working Group to assist the City in drafting a fertilizer ordinance.

 

  • July 20 marks the third anniversary of the launch of our Continuous Monitoring Station in Yarmouth. Our Monitoring Station is fondly nicknamed the “Cage of Science” because its high-tech sensors are housed inside a transformed lobster trap. The instruments measure temperature, salinity, oxygen, pH, and carbon dioxide.
    Photo by Kevin Morris

    Together, they collect data once an hour, every hour, year round.  At this time of year, Mike has to scrape off a new array of marine hitchhikers whenever he hauls up the Cage of Science to download data.

 

  • ‘Tis the season to think about what not to put on your lawn! With five workshops behind her, Associate Director Mary Cerullo has scheduled another five BayScaping presentations for August and beyond. She is happy to talk with neighborhood groups about green yards and a blue Bay.

 

  • There has been such a demand by community groups to volunteer for coastal cleanups and storm drain stenciling projects that Community Engagement Coordinator Sarah Lyman and summer intern Alexis Burns have been very busy. They already have hosted seven events with 106 participants who collected an estimated 238 lbs. of trash and stenciled 238 storm drains!

 

  • Photo by Kevin Morris

    Our new pumpout boat, Headmaster, was launched on June 10th to pump raw sewage from the marine toilets of recreational boats. Captain Jim Splude, our congenial pumpout boat coordinator, can go about his business more efficiently now with a new boat that has more than twice the holding capacity of the old one.

 

  • Our Water Reporter volunteer project is expanding as we hoped and planned. Nearly 40 enthusiastic volunteers attended our Water Reporter training on June 24. Volunteers continue to sign up to keep watch over specific areas of the Bay.
    July 10 was the first anniversary of Friends of Casco Bay’s launch of the Water Reporter app. To date, 162 volunteers in this observing network have made more than 500 posts. We call that a great start!
Mike and Ivy on the Boat

Casco Bay Matters: Advancing the conversation—and action—on climate change

Mike and Ivy on the Boat

Living close to the ocean, Casco Bay residents are witnessing the effects of climate change happening here now: warming water temperatures, increasing ocean acidity, and more severe storms. We too are seeing the changes in our data and when we are out on the Bay.

From April through October, our Research Associate Mike Doan and Casco Baykeeper Ivy Frignoca are on the Bay frequently to monitor water quality, follow up on pollution reports, or meet with partners on issues best understood from the water. Their vigilance gives them a firsthand view of changes happening in our coastal waters.

Mike, Ivy, and Executive Director Cathy Ramsdell shared these and other observations in our first-ever Casco Bay Matters series. Nearly 400 people attended Ocean Acidification, Climate Change and You presentations about what we are learning about a changing Casco Bay.

They shared how Mainers are working together to shape policies and actions to respond to these threats. Ivy is coordinating the Maine Ocean and Coastal Acidification partnership, a diverse coalition of scientists, lawmakers, aquaculturalists, and seafood harvesters, who collaborate on research and strategies to confront the threats that climate change and acidification pose to Maine’s marine resources. We also are working with legislators to pass a bill to create a state-sponsored Science and Policy Advisory Council on the Impact of Climate Change on Maine’s Marine Species.

Video Recordings of Casco Bay Matters:

Casco Bay Matters Intro Video

If you missed our Casco Bay Matters presentations of Ocean Acidification, Climate Change and You, you are in luck — our stalwart volunteer Deb Dawson recorded and edited videos of our South Portland (March 25, 2019) event. See the series of three videos on our YouTube channel.

Highlights from Casco Bay Matters:

Warmer waters: Friends of Casco Bay has been tracking water temperatures for over a quarter century. On average, water temperatures in Casco Bay have risen 2.5°F (1.4°C) since 1993. The growth, reproduction, and survival of marine life are influenced by temperature.

Rising Water Temperatures in Casco Bay

More carbon dioxide in our coastal waters from air and from land: We know that burning fossil fuels adds carbon dioxide to the atmosphere, trapping heat and warming the planet. Nearly 30% of atmospheric carbon dioxide is absorbed by the ocean. Carbon dioxide mixes with water to form carbonic acid, making the water more acidic. This is ocean acidification.

Maine’s nearshore waters are also at risk from coastal acidification. Excess nitrogen from sewage treatment plants, polluted stormwater, and fertilizers can stimulate massive algal growth. When the algal blooms die, decomposition depletes the area of lifegiving oxygen and releases carbon dioxide, further acidifying the water.

Threats to the ocean food web: More carbon dioxide in our waters means less shell-building material (calcium carbonate) for clams, mussels, and planktonic creatures that support the ocean food chain. Data from our Continuous Monitoring Station enable us to calculate the calcium carbonate saturation state — what scientists term omega aragonite — which can tell us whether, at any given time, enough calcium carbonate is readily available to shell-building creatures. Shell formation becomes more difficult for some species when the amount of available calcium carbonate falls below a 1.5 aragonite saturation state.

Our data indicate that for part of the year, levels of calcium carbonate in Casco Bay fall below the threshold for optimal shell-building for some species.

Sea level rise: As water warms, it expands, and the seas encroach on our coastline. Coastal observers and property owners are reporting more erosion.

Increasing precipitation: Maine has seen a six-inch rise in average annual precipitation since 1895, further threatening coastal properties. Torrential rains intensify erosion and flush overloads of nitrogen, pollutants, and sediments into coastal waters.

Those who depend upon the sea can attest to the fast pace of change. What do these changes mean for Casco Bay?

  • As oceans become more acidic, we can anticipate more pitting or thinning of the shells of many commercially viable species in Casco Bay, such as clams, mussels, and oysters.
  • Voracious green crabs — which eat juvenile shellfish — thrive in warming waters.
  • Rising water temperatures are linked with shell disease in crustaceans, directly impacting Maine’s iconic lobster fishery.
  • Scientists and lobstermen are documenting lobster populations shifting north and east.
  • Copepods, tiny crustaceans that are the main food source for juvenile lobsters, may not be as plump as they once were. In laboratory experiments that simulate climate changes now happening in the Gulf of Maine, copepods were less fatty. With a less nutritious diet, young lobsters must divert energy from growth and resisting disease to finding enough food to survive.

Climate Change, Ocean Acidification, and You

Climate Change Science and Data

  • The climate is changing faster than expected. Greenhouse gases, such as carbon dioxide and methane, are the culprits. The burning of fossil fuels for homes, industry, and transportation releases almost 10,000 million metric tons of carbon dioxide into the atmosphere every year. 1
  • Carbon dioxide is changing not only our climate, but also the chemistry of the ocean. About 30% of the carbon dioxide we release into the atmosphere is absorbed by the ocean. 2 In marine water, carbon dioxide decreases pH and increases acidity through a process known as ocean acidification.
  • Excess nitrogen from sewage treatment plants, polluted stormwater, and fertilizers, is also adding carbon dioxide into nearshore waters through a process known as coastal acidification. 3
  • Nitrogen can fertilize massive algal growth in our waters. When the algal blooms die, decomposition depletes the area of life-giving oxygen and releases carbon dioxide, acidifying the water.

The impacts of climate change are evident right here in Casco Bay

Warmer Waters

Friends of Casco Bay has been tracking water temperatures for over 25 years. On average, our data show a 2.5° F increase in water temperatures since 1993.

Sea Level Rise

As water warms, it expands, and the sea encroaches on our coastline. Coastal observers and property owners are reporting an increase in erosion.

Increasing Precipitation

Maine has seen a six-inch average increase in annual precipitation since 1895, further threatening coastal properties. 4

Threats to the Ocean Food Web

More carbon dioxide in our waters means there is less shell-building material (calcium carbonate) for clams, mussels and oysters, as well as for tiny critters at the base of the ocean food chain. The saturation state of calcium carbonate is a key measurement of shell-building material for many organisms. Shell formation becomes more difficult when the amount of available calcium carbonate falls below a 1.5 saturation state. 5 Our recent data indicate that for nearly half the year, levels of calcium carbonate in Casco Bay are not sufficient for shell-building.

What do these changes mean for Casco Bay?

  • Research Associate Mike Doan with our Continuous Monitoring Station. The Station houses a number of instruments that collect data on carbon dioxide, temperature, salinity, oxygen, chlorophyll, and pH, hourly, 365 days a year. This large quantity of data is necessary to accurately track changes in the Bay from climate change, including ocean and coastal acidification.

    As marine waters become more acidic, we can anticipate more pitting or dissolution of the shells of many commercially viable species in Casco Bay.

  • Rising water temperatures are linked with shell disease, directly impacting our lobster fishery and tourism industries.
  • Climate change is bad news for clams because green crabs — which eat juvenile shellfish — thrive in warming waters. 6
  • The distribution and populations of marine species in the Gulf of Maine are shifting. Scientists and lobstermen are documenting the shift in distribution of Maine’s iconic lobsters north and east.
  • Copepods are tiny crustaceans that are the main food source for juvenile lobsters. In laboratory experiments, copepods raised in conditions that simulate the climate changes occurring in the Gulf of Maine were less fatty. With a less healthful diet, young lobsters must divert energy from growth and resisting disease to finding enough food to survive. 7

What is Friends of Casco Bay doing?

  • We helped form the Maine Ocean and Coastal Acidification Partnership (MOCA) to coordinate climate change research and policy change work. MOCA is a diverse coalition of researchers, policy experts, lawmakers, aquaculturalists, and seafood harvesters. We are working to create an action plan for Maine to protect the health of our coastal waters.
  • LD 1284 has been selected by the Environmental Priorities Coalition, a group of 34 environmental organizations, as one of its five priority bills to address climate change in Maine.
  • Our Water Reporter volunteers are recording observations of how the Bay is changing. These observations strengthen our advocacy efforts as these reports are shared with regulators, legislators, and other decision makers, alerting them to conditions in the Bay.

What can you do?

  • Tell your legislators to support LD 1284 to create a science and policy advisory council to address the impacts of climate change on Maine’s marine species.
  • Join Water Reporter. Your observations combined with those of other volunteers around the Bay will provide a better understanding of changing conditions.  

References

  1. T.A. Boden, R.J. Andres, G. Marland, Global, Regional, and National Fossil-Fuel CO2 Emissions, Research Institute for Environment, Energy, and Economics, Appalachian State University, 2017. https://cdiac.ess-dive.lbl.gov/trends/emis/overview_2014.html
  2. N. Gruber, D. Clement, R. Feely, et al., The oceanic sink for anthropogenic CO2 from 1994 to 2007, Science, 2019. http://science.sciencemag.org/content/363/6432/1193
  3. J. Weiss, Marine Pollution: What Everyone Needs to Know, Oxford University Press, 2015.
  4. I. Fernandez, C. Schmitt, E. Stancioff, et al., Maine’s Climate Future: 2015 Update, The University of Maine, 2015. https://mco.umaine.edu/pubs/pdf/mcf-2015.pdf
  5. J. Ekstrom, L. Suatoni, S. Cooley, et al., Vulnerability and adaptation of US shellfisheries to ocean acidification, Nature, 2015. http://pacshell.org/pdf/Ekstrom_etal2015.pdf
  6. E. Tan, B, Beal, Interactions between the invasive European green crab, Carcinus maenas, and juveniles of the soft-shell clam, Mya arenaria, in eastern Maine, USA, Journal of Experimental Marine Biology and Ecology, 2015. https://downeastinstitute.org/wp-content/uploads/2018/08/tan-beal-2015.pdf
  7. Copepods cope with acidification, Bigelow Laboratory for Ocean Sciences, 2018. https://www.bigelow.org/news/articles/2018-04-10.html

See what is going on beneath the surface. Check out our data!

Photograph by Kevin Morris • Aerial support provided by LightHawk

On July 20, 2016, our Continuous Monitoring Station began recording data hourly, 365 days a year. We are excited to share the first two and half years of data, collected at our water quality monitoring site in Yarmouth, near the coastal midpoint of Casco Bay. We will update these graphs monthly, so come back often and see for yourself how Casco Bay is changing.

See the data

Water Temperatures Are Changing in Casco Bay

Our CMS allows us to identify nuances in how the Bay is changing year-to-year in far more detail than we ever could before.

Friends of Casco Bay’s newest workhorse—our Continuous Monitoring Station (CMS)—has been amassing hourly data on the health of the Bay for over two years now.

Research Associate Mike Doan is excited to be able to look at the daily, weekly, and seasonal changes in the Bay in far more detail than ever before. Mike was able to make comparisons between the first two years of data, comparisons we will continue tracking year to year. For example, the graph above shows nuances we could not have documented before:

A. The period of late summer-early fall of 2016 was warmer than the same time period in 2017.

B. The winter of 2017-18 turned colder earlier, with water temperatures dropping below 0°C before the end of December. In the previous winter, water temperatures did not drop below 0°C until late January.

C. Overall, spring and summer of 2018 were warmer than the same periods the year before.

On July 20, 2018, we marked the second anniversary of when our Continuous Monitoring Station began recording data off Yarmouth near the coastal midpoint of Casco Bay. The data are providing insights into how climate change and ocean acidification may be affecting the health of our waters.

The Station consists of a modified lobster trap that houses a data sonde and a carbon dioxide sensor, instruments that collect data on many different aspects of water conditions.

Mike is the architect of our Cage of Science. “It’s been a lot of work to get to this point,” admits Mike, “and it is exciting to see the quality and quantity of data we are collecting.” Colleagues have taken notice of how he has been able to outfit an electronic station with accurate, high-tech monitoring equipment at reasonable cost. Several scientists already are using the continuous data.

We look forward to building the long-term data set that will provide a more complete picture of a changing Casco Bay, information that can help our communities assess, mitigate, and adapt to those changes.

Why is water temperature important?
Temperature influences how much oxygen and carbon dioxide the water can hold, the rate of plant growth and decay, and the movement of currents. Temperatures also impact the geographic distribution of marine life. Menhaden (pogies), typically found in the mid-Atlantic, have been showing up in large numbers in Casco Bay. Lobstermen say that lobsters are remaining farther offshore, with fewer showing up in warmer water areas around inshore eelgrass beds. We are seeing species of phytoplankton that were never before documented in Casco Bay.

Thanks to support from Casco Bay Estuary Partnership and generous donors, our Continuous Monitoring Station collects data once an hour, every hour, year round.

See sea critters and our Cage of Science

Watch this short video about the Cage of Science!

You may know that Friends of Casco Bay’s Continuous Monitoring Station—AKA our “Cage of Science”—gives us vital data about the health of the Bay. But did you also know that observations of what sea life is growing on and hanging out in the station also give us important information about conditions of our waters? In this video, Research Associate Mike Doan shows us some of the sea critters that visited the Cage of Science in August.

Thanks to support from Casco Bay Estuary Partnership and generous donors, our Continuous Monitoring Station collects data once an hour, every hour, year round.

Spring Blooms in Casco Bay

What signs tell you that spring has arrived? Grass turning green? A robin in your yard? Ospreys returning to their nests?

What about huge blooms of phytoplankton in Casco Bay?

The chlorophyll fluorescence measurements in the graph above were recorded by our Continuous Monitoring Station, which has been in place for almost two years.

Chlorophyll fluorescence is a measure that provides an estimate of phytoplankton abundance. Chlorophyll is the green pigment in plants that traps the energy of the sun for photosynthesis.

The graph tells us that this year’s spring bloom of phytoplankton started around the same time as last year, but was bigger in magnitude this year than in 2017.

Why do we care about chlorophyll levels? Phytoplankton are the single-celled plants that make up the foundation of the ocean food web. Phytoplankton also provide half of all the oxygen we breath—so thank phytoplankton for every other breathe you take. You can read more about phytoplankton and chlorophyll in our recent post.

Photography by Kevin Morris

Every hour and every day, the Continuous Monitoring Station—a.k.a our “Cage of Science”—is building a more complete picture of the seasons beneath the Bay. Thanks to support from Casco Bay Estuary Partnership and generous donors, the Station collects measurements of temperature, salinity, pH, dissolved oxygen, carbon dioxide, and chlorophyll fluorescence year-round. Every other week, Research Associate Mike Doan cleans and calibrates the equipment, and downloads and graphs the data to track conditions in the Bay.

Spring starts early in Casco Bay!

Our Continuous Monitoring Station chronicles the rise and fall of microscopic blooms in Casco Bay. This graph of chlorophyll fluorescence tells us that the spring bloom of phytoplankton beneath the ocean happens well before plants on land emerge from beneath the snow.

 

It may be hard to believe if you have spent any time outside this chilly winter, but spring likely has sprung in the waters of Casco Bay.

By January, the lengthening daylight has jumpstarted the growth of phytoplankton, the single-celled plants that are the foundation of the ocean food web. Like plants on land, they respond to increasing sunlight by bursting into bloom. By mid-February, daylight has increased by over an hour since December 21st, and the phytoplankton are flourishing.

Last January, 2017, there was an early bloom of phytoplankton in Casco Bay. How do we know? Friends of Casco Bay maintains an underwater sentinel that collects information about the water of the Bay every hour, 24 hours a day, 365 days a year. It is our Continuous Monitoring Station.

We will soon be crunching the January-February 2018 data, looking for confirmation of this year’s phytoplankton bloom.

A modified lobster trap houses a carbon dioxide sensor and a data sonde, electronic devices that continually take the pulse of the Bay. Together, they provide evidence of how our coastal waters may be changing over time. This long-term monitoring station, fondly known as “the Cage of Science,” is anchored just above the sea floor off Cousins Island in Yarmouth.

We now have over a year of hourly data on oxygen levels, carbon dioxide, pH (the level of acidity of the water), salinity, temperature, water clarity, water depth, and chlorophyll fluorescence, a measure that provides an estimate of phytoplankton abundance. Chlorophyll is the green pigment in plants that traps the energy of the sun for photosynthesis.

Phytoplankton provide food for the smallest zooplankton. These tiny floating animals are eaten by larger zooplankton, such as copepods, shrimplike creatures. Both phytoplankton and zooplankton are at the mercy of the currents, winds, and tides.

The data from the Continuous Monitoring Station documents the changes in the water’s chemistry as a result of these blooms. The net positive effect in Casco Bay over the course of the spring season is more oxygen and less acidic water, thanks to those early-blooming phytoplankton.

Beyond Casco Bay, in the Gulf of Maine, a circular current called a gyre distributes marine life around the Gulf. The gyre transports phytoplankton to where zooplankton are hatching, just in time to feed emerging copepods, which in turn feed baby fish, clams, and other sea creatures.

Success in the ocean food web, like in much of life, depends on being in the right place at the right time.

Our Continuous Monitoring Station has been in place for about a year and a half, too soon perhaps to provide data that might indicate whether or not Casco Bay’s food web is changing. Still, every hour and every day, our cage of science is building a more complete picture of the seasons beneath the Bay, giving us insight into how climate change may alter the food web of our coastal water in years to come.

Thank you to funders of this project, including Casco Bay Estuary Partnership, Davis Conservation Foundation, Horizon Foundation, Schwartz Family Fund of the New Hampshire Charitable Foundation, and WEX. We also thank our Members and the many donors, local businesses, and foundations that give us operational support to do our work each year.

Continuous Monitoring Station

Monitoring a Changing Casco Bay 365 Days a Year

Continuous Monitoring Station
When we haul up the Continuous Monitoring Station to download data and recalibrate the equipment, we also track marine creatures that may have found a home on our “cage of science.”

Covered with sea squirts, sea stars, and other marine hitchhikers, the newest member of our monitoring team looks like an abandoned lobster trap. It may be homely, but we are pretty impressed with what it does, collecting water quality data hourly, 24 hours a day, 365 days a year. It is our Continuous Monitoring Station, which will help us answer the question “How are our coastal waters changing over time?” Research Associate Mike Doan calls it “the cage of science.”

It has been just over a year since we placed a carbon dioxide sensor and a data sonde—an electronic device that records temperature, pH, and other characteristics of water quality—inside this modified lobster trap and moored it in healthy waters near the center of Casco Bay off Cousins Island in Yarmouth.

After one full year, we have over 8,760 hours of data on oxygen levels, carbon dioxide, pH (the level of acidity of the water), salinity, temperature, chlorophyll fluorescence (estimated phytoplankton abundance), water clarity, and water depth.

Thanks to our 26-year data set on water quality in Casco Bay, we understand when and which areas of the Bay are likely to exhibit challenged water quality conditions that require further study. Armed with this baseline data, we can now consider how to address the question, How is the Bay changing?

The steady flow of data from the Station already is helping us detect and document how climate change and emerging coastal stressors may be affecting the Bay. Hourly data helps us identify daily, seasonal,
and annual trends to better understand the extent to which ocean acidification may be impacting the water chemistry of Casco Bay. In future years, we hope to deploy two more “cages of science,” one in challenged waters in Portland Harbor and one near Harpswell to help detect the influence the Kennebec River has on Eastern Casco Bay.

What is a data sonde?
A data sonde, such as the one being used by Research Associate Mike Doan, is an oceanographic
monitoring instrument that takes multiple measurements of water quality simultaneously. In
addition to being used as part of our Continuous Monitoring Station, data sondes are used by
staff scientists in other water quality monitoring efforts from shore and by boat. The data is
downloaded to a computer and analyzed to provide a long-term picture of water quality over
time. We thank Casco Bay Estuary Partnership and our generous members for helping fund
our Continuous Monitoring Station’s first year.

 

Seastars on Continuos Monitoring Station

Keeping an eye on the Bay 24/7

Seastars on Continuos Monitoring StationImagine working 8,760 hours a year. Friends of Casco Bay has two water quality monitors that do just that: a datasonde, an instrument that can measure several properties of water at once, and a specialized device that only measures carbon dioxide. They are anchored together on the ocean floor in Yarmouth to collect data once an hour, every hour, year round. Appropriately, these high tech tools comprise our new Continuous Monitoring Station. These hard workers have been in place since July 2016.

 

Why is this hourly data vital?

 

The steady flow of data our Continuous Monitoring Station collects will help us detect and document how climate change and other emerging coastal stressors may (or may not) be affecting the Bay. Hourly data will help us identify daily, seasonal, and annual trends and better understand the extent to which ocean acidification may be impacting the water chemistry of Casco Bay. The station may also help us assess sea level rise. The station collects data on oxygen levels, carbon dioxide (CO2), pH (the level of acidity of the water), salinity, temperature, chlorophyll, and water depth.

 

In order to ensure continuous data, we have two datasondes which are swapped and refreshed every two weeks. When he arrives at the dock in Yarmouth, Research Associate Mike Doan has less than an hour to reposition the alternate datasonde so that we don’t miss any of those 8,760 hours of information.

 

Mike hauls up the anchored devices, uploads data from the CO2 sensor to his laptop, and scrapes off marine hitchhikers such as sea stars, tunicates, and algae. “It’s amazing how fast sea creatures occupy any available surface, including our instruments!” says Mike. Before he leaves, he replaces the datasonde with one freshly calibrated and lowers the entire Continuous Monitoring Station back onto the ocean floor. Such attention to detail provides quality assurance that the data is accurate.

 

While this station is busy year around, we continue to enlist volunteers to help us understand the overall health of our marine waters and to identify troubled areas of the Bay. From April to October each year, more than 90 volunteer Citizen Stewards monitor scores of shoreside sites where they measure five parameters of the surface water: pH, salinity, water temperature, water clarity, and oxygen level. If you are interested in becoming a water quality monitoring volunteer, you can learn more about the program here.

 

Our volunteers, staff scientists, and now our automated partners, all play a role in helping us to better understand what is going on in Casco Bay.

 

 

Thank you to funders of this project, including Casco Bay Estuary Partnership, Davis Conservation Foundation, Horizon Foundation, Schwartz Family Fund of the New Hampshire Charitable Foundation, and WEX. We also thank our Members and the many donors, local businesses, and foundations that give us operational support to do our work each year.